Basit öğe kaydını göster

dc.contributor.authorOner, Yuksel
dc.contributor.authorBulut, Hasan
dc.date.accessioned2020-06-21T12:18:39Z
dc.date.available2020-06-21T12:18:39Z
dc.date.issued9999
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.urihttps://doi.org/10.1080/03610926.2020.1722840
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10252
dc.descriptionBULUT, Hasan/0000-0002-6924-9651en_US
dc.descriptionWOS: 000512409700001en_US
dc.description.abstractCluster analysis is defined as a group of multivariate statistical methods that are used to classify identical, or similar units. As is the case with all other classical statistical methods, classical clustering analysis gives misleading results when there is an outlier in the multivariate data set. To solve this problem many approaches have been proposed. This study focuses on developing a new approach, aiming to make the expectation maximization (EM) clustering algorithm resistant to outliers. We proposed a new robust hybrid clustering algorithm called robust EM (ROBEM) to reach our aim. This algorithm combines the EM clustering algorithm with robust principal component analysis (ROBPCA) algorithm. Spatial EM algorithm was proposed as a robust EM algorithm in the literature, but our simulation results and sample data applications showed that the ROBEM algorithm was more successful than the spatial EM algorithm in terms of outlier detection rate and faulty classification rate. Moreover, the proposed algorithm ROBEM provides similar results to the other well known robust clustering algorithms, such as TCLUST and Trimmed k-Means.en_US
dc.description.sponsorshipTUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK); Ondokuz Mayis University Project Management OfficeOndokuz Mayis Universityen_US
dc.description.sponsorshipThe authors would like to thank the TUBITAK (The Scientific and Technological Research Council of Turkey), and Ondokuz Mayis University Project Management Office which financially supporting this study.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/03610926.2020.1722840en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClustering analysisen_US
dc.subjectrobust cluster algorithmsen_US
dc.subjectEMen_US
dc.subjectspatial EMen_US
dc.subjectTCLUSTen_US
dc.subjecttrimmed k-meansen_US
dc.subjectROBEMen_US
dc.titleA robust EM clustering approach: ROBEMen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster