• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Artificial Bee Colony-Guided Approach for Electro-Encephalography Signal Decomposition-Based Big Data Optimization

Tarih

2020

Yazar

Aslan, Selcuk

Üst veri

Tüm öğe kaydını göster

Özet

The digital age has added a new term to the literature of information and computer sciences called as the big data in recent years. Because of the individual properties of the newly introduced term, the definitions of the data-intensive problems including optimization problems have been substantially changed and investigations about the solving capabilities of the existing techniques and then developing their specialized variants for big data optimizations have become important research topic. Artificial Bee Colony (ABC) algorithm inspired by the clever foraging characteristics of the real honey bees is one of the most successful swarm intelligence-based metaheuristics. in this study, a new ABC algorithm-based technique that is named source-linked ABC (slinkABC) was proposed by considering the properties of the optimization problems related with the big data. The slinkABC algorithm was tested on the big data optimization problems presented at the Congress on Evolutionary Computation (CEC) 2015 Big Data Optimization Competition. The results obtained from the experimental studies were compared with the different variants of the ABC algorithm including gbest-guided ABC (GABC), ABC/best/1, ABC/best/2, crossover ABC (CABC), converge-onlookers ABC (COABC), quick ABC (qABC) and modified gbest-guided ABC (MGABC) algorithms. In addition to these, the results of the proposed ABC algorithm were also compared with the results of the Differential Evolution (DE) algorithm, Genetic algorithm (GA), Firefly algorithm (FA), Phase-Based Optimization (PBO) algorithm and Particle Swarm Optimization (PSO) algorithm-based approaches. From the experimental studies, it was understood that the ABC algorithm modified by considering the unique properties of the big data optimization problems as in the slinkABC produces better solutions for most of the tested instances compared to the mentioned optimization techniques.

Kaynak

International Journal of Information Technology & Decision Making

Cilt

19

Sayı

2

Bağlantı

https://doi.org/10.1142/S0219622020500078
https://hdl.handle.net/20.500.12712/10142

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.