• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gender estimation according to gait by using ellipse fitting and static body parameter approaches

Date

2011

Author

Gürbüz E.
Şenyer N.

Metadata

Show full item record

Abstract

In this study, by using Support Vector Machine (SVM) and Learning Vector Quantization (LVQ) classifiers, the issue of "gender estimation according to gait" is covered. The images used in the study are provided from the CASIA Gait Database. After the images are categorized according to gender, training and test data sets are constructed. In the next step, the gait images belonging to each person in the data sets are selected so that they complete a cycle (two footsteps), the remaining of the images are removed, and for each remaining array of images, feature extraction is carried out by using the ellipse fitting and static body parameter approaches together firstly in the literature. By giving the features extracted by using both of the approaches on the training dataset to SVM and LVQ classifiers, training processes are implemented and then, the features extracted from the test data by using the same approaches are given to these classifiers. After the classification processes, the average correct classification rates for SVM and LVQ are 100% and 90% respectively. © 2011 IEEE.

Source

2011 IEEE 19th Signal Processing and Communications Applications Conference, SIU 2011

URI

https://doi.org/10.1109/SIU.2011.5929613
https://hdl.handle.net/20.500.12712/4589

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.