• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Enstitüler
  • Lisansüstü Eğitim Enstitüsü
  • Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  • Yüksek Lisans Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Enstitüler
  • Lisansüstü Eğitim Enstitüsü
  • Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
  • Yüksek Lisans Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EOG tabanlı insan bilgisayar arabirim tasarımı

Thumbnail

View/Open

Tam Metin / Tez (4.233Mb)

Date

2022

Author

Arslan, Recep

Metadata

Show full item record

Citation

Arslan, R. (2022). EOG tabanlı insan bilgisayar arabirim tasarımı. (Yüksek lisans tezi). Ondokuz Mayıs Üniversitesi, Samsun.

Abstract

Bilgisayarların kullanılmaya başlamasından bu yana İnsan Bilgisayar Arabirimi (İBA) üzerine yapılan çalışmalar da artmıştır. İBA, insanların yaşamlarını kolaylaştırmada, birçok işi hızlıca sonuca ulaştırmada, birlikte iletişim kurmada ve bazı cihazların opere edilmesinde kullanılabilmektedir. Birleşmiş Milletler 1992 yılından bu yana tüm dünyada engellilerin toplumsal yaşama katılımını ve onlara fırsat eşitliğini sağlamak için çalışmalarını sürdürmektedir. İBA’nın engelli bireylerin sorunlarının çözümünde büyük bir potansiyele sahip olduğu, ayrıca sosyalleşmelerine de katkıda bulunduğu görülmektedir. Bu çalışmada gözlerin istemli hareket ettirilerek kontrol edilmek istenen bir İBA için uygun sınıflandırma yöntemi araştırılmıştır. Elektrookülogram (EOG) temelli İBA’nın kontrolü için yedi isteli göz hareketinin iki kanallı aksiyon potansiyelleri kulanılmıştır. Sınıflandırmanın gerçek zamanlı uygulamasındaki başarımının en önemli etkenlerinden birisi veri kümesini doğru şekilde oluşturmaktır. Kullanıcılardan kaynaklı sinyal farklılıklarını en aza indirmek için öncelikle veri kaydında özgün bir yöntem geliştirilmiştir. Veri seti, yedi farklı göz hareketi sırasında ölçülen elektrookülografi (EOG) işaretlerinden oluşmaktadır. Sayısal işaret işleme yöntemleri kullanılarak EOG sinyali ön plana çıkarılmıştır. Sinyalllerin doğru şekilde ayrıştırılmasını sağlayacak geniş bir öznitelik çıkarma yöntem araştırması yapılmıştır. Bu öznitelikler hem klasik hem de derin öğrenme metotları ile sınıflandırılmıştır. Ayrıca öznitelik çıkarılmadan sinyalin ham haliyle yine derin öğrenme metotlarının sonuçları araştırılmıştır. Klasik sınıflandırma metotları ileri yönlü öznitelik seçim algoritması birlikte kullanılmıştır. Birçok öznitelik ve sınıflandırma yönteminin araştırıldığı, klasik ve derin öğrenme metotlarının karşılaştırıldığı çalışmamızda yedi komut için lightgbm sınıflandırma algoritması ile 95,66%, ham veri üzerinde yapılan derin öğrenme yöntemi ile ise %95.82 gibi yüksek bir oranda başarım elde edilmiştir. Geliştirdiğimiz insan bilgisayar arabiriminin, ihtiyaç veya yardım belirtme, engelli birey eğitimi, bazı ihtiyaçların otomatik giderilmesi gibi birçok farklı uygulamaya entegre edilebilir düzeyde katkı sağlayabileceği değerlendirilmektedir.
 
Bilgisayarların kullanılmaya başlamasından bu yana İnsan Bilgisayar Arabirimi (İBA) üzerine yapılan çalışmalar da artmıştır. İBA, insanların yaşamlarını kolaylaştırmada, birçok işi hızlıca sonuca ulaştırmada, birlikte iletişim kurmada ve bazı cihazların opere edilmesinde kullanılabilmektedir. Birleşmiş Milletler 1992 yılından bu yana tüm dünyada engellilerin toplumsal yaşama katılımını ve onlara fırsat eşitliğini sağlamak için çalışmalarını sürdürmektedir. İBA’nın engelli bireylerin sorunlarının çözümünde büyük bir potansiyele sahip olduğu, ayrıca sosyalleşmelerine de katkıda bulunduğu görülmektedir. Bu çalışmada gözlerin istemli hareket ettirilerek kontrol edilmek istenen bir İBA için uygun sınıflandırma yöntemi araştırılmıştır. Elektrookülogram (EOG) temelli İBA’nın kontrolü için yedi isteli göz hareketinin iki kanallı aksiyon potansiyelleri kulanılmıştır. Sınıflandırmanın gerçek zamanlı uygulamasındaki başarımının en önemli etkenlerinden birisi veri kümesini doğru şekilde oluşturmaktır. Kullanıcılardan kaynaklı sinyal farklılıklarını en aza indirmek için öncelikle veri kaydında özgün bir yöntem geliştirilmiştir. Veri seti, yedi farklı göz hareketi sırasında ölçülen elektrookülografi (EOG) işaretlerinden oluşmaktadır. Sayısal işaret işleme yöntemleri kullanılarak EOG sinyali ön plana çıkarılmıştır. Sinyalllerin doğru şekilde ayrıştırılmasını sağlayacak geniş bir öznitelik çıkarma yöntem araştırması yapılmıştır. Bu öznitelikler hem klasik hem de derin öğrenme metotları ile sınıflandırılmıştır. Ayrıca öznitelik çıkarılmadan sinyalin ham haliyle yine derin öğrenme metotlarının sonuçları araştırılmıştır. Klasik sınıflandırma metotları ileri yönlü öznitelik seçim algoritması birlikte kullanılmıştır. Birçok öznitelik ve sınıflandırma yönteminin araştırıldığı, klasik ve derin öğrenme metotlarının karşılaştırıldığı çalışmamızda yedi komut için lightgbm sınıflandırma algoritması ile 95,66%, ham veri üzerinde yapılan derin öğrenme yöntemi ile ise %95.82 gibi yüksek bir oranda başarım elde edilmiştir. Geliştirdiğimiz insan bilgisayar arabiriminin, ihtiyaç veya yardım belirtme, engelli birey eğitimi, bazı ihtiyaçların otomatik giderilmesi gibi birçok farklı uygulamaya entegre edilebilir düzeyde katkı sağlayabileceği değerlendirilmektedir.
 

URI

http://libra.omu.edu.tr/tezler/145014.pdf
https://hdl.handle.net/20.500.12712/34018

Collections

  • Yüksek Lisans Tez Koleksiyonu [93]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.