• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Meslek Yüksekokulları
  • Çarşamba Ticaret Borsası Meslek Yüksekokulu
  • Finans - Bankacılık ve Sigortacılık Bölümü
  • Finans-Bankacılık ve Sigortacılık Bölümü Makale Koleksiyonu
  • View Item
  •   DSpace Home
  • Meslek Yüksekokulları
  • Çarşamba Ticaret Borsası Meslek Yüksekokulu
  • Finans - Bankacılık ve Sigortacılık Bölümü
  • Finans-Bankacılık ve Sigortacılık Bölümü Makale Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sharpe oranı ve treynor endeksi performans ölçülerine dayalı genetik algoritma yaklaşımı

Thumbnail

View/Open

Tam Metin / Full Text (722.4Kb)

Date

2021

Author

Başaran, Azize Zehra Çelenli

Metadata

Show full item record

Citation

BAŞARAN A. Z. Ç (2021). Sharpe Oranı ve Treynor Endeksi Performans Ölçülerine Dayalı Genetik Algoritma Yaklaşımı. Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 16(1), 17 - 34. Doi: 10.29233/sdufeffd.780517.

Abstract

Yatırımcı her zaman kendisine en yüksek faydayı sağlayacak olan portföyü oluşturmak istemektedir. Bu durum optimize edilmesi gereken portföy problemini ortaya çıkartır. Literatürde portföy optimizasyon problemi çözümünde genellikle bir klasik optimizasyon yöntemlerinden biri olan karesel programlama yöntemi kullanılmaktadır. Son yıllarda yapılan çalışmalar incelendiğinde yapay zeka algoritmalarının optimizasyon problemlerinde gösterdiği başarılardan yola çıkarak bu çalışmada genetik algoritma yaklaşımının portföy optimizasyon problemindeki başarısı ölçülmek istenmektedir. Portföy optimizasyon problemi için karesel programlama ile genetik algoritma yöntemleri portföy performans ölçüleri açısından karşılaştırılmıştır. Karşılaştırmada 2019 yılına ait BIST-30 endeksinde işlem gören hisse senetleri kullanılmıştır. Portföy performansını değerlendirmek için sharpe oranı ile treynor endeksi performans ölçüleri iki optimizasyon yönteminde de amaç fonksiyonu olarak kullanılmıştır. İki optimizasyon yönteminde de amaç; en yüksek performans ölçüsü oranına sahip portföyün belirlenmesidir. Yapılan analiz sonucunda genetik algoritma yönteminin her iki portföy performans ölçüsüne göre de optimum sonuca ulaştığı gözlemlenmiş ve treynor endeksinin sharpe oranına göre daha yüksek performans ölçüsü oranına sahip bir portföy oluşturduğu belirlenmiştir.
 
The investor always wants to create a portfolio that will benefit him with the highest benefit. This situation presents the portfolio problem that needs to be optimized. In the literature, quadratic programming method, which is one of the classical optimization methods, is used to solve the portfolio optimization problem. In recent years, it has been observed that artificial intelligence methods give better results. In this study, genetic algorithm method was used for portfolio optimization problem. For the portfolio optimization problem, quadratic programming and genetic algorithm methods were compared in terms of portfolio performance measures. The stocks listed in the BIST-30 index of 2019 were used for comparison. Sharpe ratio and treynor index performance measures were used to evaluate portfolio performance. The goal in both optimization methods; it is the determination of the portfolio with the highest performance measure ratio. As a result of the analysis, it was observed that the genetic algorithm method reached the optimum result according to both portfolio performance measures. treynor index has been determined to form a portfolio with a higher performance measure ratio compared to the sharpe ratio.
 

Source

Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi

Volume

16

Issue

1

URI

https://doi.org/10.29233/sdufeffd.780517
https://hdl.handle.net/20.500.12712/33256

Collections

  • Finans-Bankacılık ve Sigortacılık Bölümü Makale Koleksiyonu [1]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [4706]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.