• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sustainability of agricultural and wild cereals to aerotechnogenic exposure

Date

2019

Author

Chaplygin V.
Mandzhieva S.
Minkina T.
Sushkova S.
Kizilkaya R.
Gülser C.
Chernikova N.

Metadata

Show full item record

Abstract

In recent decades, the problem of the constantly increasin level of anthropogenic load on the environment is becoming more and more acute. Some of the most dangerous pollutants entering the environment from industrial emissions are heavy metals. These pollutants are not susceptible to biodegradation over time, which leads to their accumulation in the environment in dangerous concentrations. The purpose of this work is to study the sustainability of cultivated and wild plants of the Poaceae family to aerotechnogenic pollution in the soil. The content of heavy metals in couch grass (Elytrigia repens (L.) Nevski), meadow bluegrass (Poa pratensis L.) and soft wheat (Triticum aestivum) plants grown in the impact zone of Novocherkassk Power Station has been analyzed. Contamination of cultivated and wild cereals with Pb, Zn, Ni and Cd has been established. It has been shown that the accumulation of heavy metals is individual for each plant species. An average and close correlation have been established between the total HM content and the content of their mobile forms in the soil and their content in plants. For the plants studied, the translocation factor (TF) and the distribution coefficient (DC) of HM have been calculated. The TF is formed by the ratio of the concentration of an element in the root plant dry weight to the content of its mobile compounds in the soil. The DC value makes it possible to estimate the capacity of the aboveground parts of plants to absorb and accumulate elements under soil pollution conditions and is determined as the ratio of the metal content in the aboveground biomass to its concentration in the roots. TF and DC values have shown a significant accumulation of elements by plants from the soil, as well as their translocation from the root system to the aboveground part. It has been revealed that even within the same Poaceae family, cultural species are more sensitive to man-made pollution than wild-growing ones. © 2019, Springer Nature B.V.

Source

Environmental Geochemistry and Health

URI

https://doi.org/10.1007/s10653-019-00411-6
https://hdl.handle.net/20.500.12712/2406

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.