• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel metal complexes containing 6-methylpyridine-2-carboxylic acid as potent ?-glucosidase inhibitor: synthesis, crystal structures, DFT calculations, and molecular docking

Date

2020

Author

Avcı D.
Altürk S.
Sönmez F.
Tamer Ö.
Başoğlu A.
Atalay Y.
Dege N.

Metadata

Show full item record

Abstract

Abstract: The World Health Organization (WHO) report shows that diabetes mellitus (DM) will be one of the ten deadly diseases in the near future. The best way to prevent DM is to decrease blood glucose levels and keep under control; therefore, it is important to design and synthesize the effective inhibitors that can be used in the treatment of DM disease. In this respect, a series of ten metal complexes containing 6-methylpyridine-2-carboxylic acid {[Cr(6-mpa)2(H2O)2]·H2O·NO3, (1), [Mn(6-mpa)2(H2O)2], (2), [Ni(6-mpa)2(H2O)2]·2H2O, (3), [Hg(6-mpa)2(H2O)], (4), [Cu(6-mpa)2(Py)], (5), [Cu(6-mpa)2(H2O)]·H2O, (6), [Zn(6-mpa)2(H2O)]·H2O, (7), [Fe(6-mpa)3], (8), [Cd(6-mpa)2(H2O)2]·2H2O, (9), and [Co(6-mpa)2(H2O)2]·2H2O, (10)} were synthesized as ?-glucosidase inhibitors. We found that the IC50 values of the synthesized complexes ranged from 0.247 ± 0.10 to > 600 ?M against ?-glucosidase. The spectral analyses for these complexes characterized by XRD and LC–MS/MS were also carried out by FT-IR and UV–Vis spectra. Additionally, the DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level was applied to obtain optimal molecular geometries and spectral behaviors as well as significant contributions to the electronic transitions for the complexes. The molecular docking study was also performed to display interactions between the target protein (the template structure Saccharomyces cerevisiae isomaltase) and the synthesized complexes (1–10). Graphic abstract: [Figure not available: see fulltext.]. © 2020, Springer Nature Switzerland AG.

Source

Molecular Diversity

URI

https://doi.org/10.1007/s11030-020-10037-x
https://hdl.handle.net/20.500.12712/2228

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.