• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Basic linear filters in extracting of auditory evoked potentials

Date

2007

Author

Aydin, Serap

Metadata

Show full item record

Abstract

The aim of this study is to assess the performance of additivity-based linear filtering techniques into two groups in extracting of auditory Evoked Potentials (EPs) from a relatively small number of sweeps. We named these groups as: Group A (The Wiener Filtering (WF) and coherence weighted WF (CWWF)) of orthogonal projections) and Group B (standard adaptive algorithms of Least Mean Square (LMS), Recursive Least Square (RLS), and one-step Kalman filtering (KF)). All methods are compared to the traditional ensemble averaging (EA) in simulations, pseudo-simulations and experimental studies based on the signal-to-noise-ratio (SNR) enhancement. We observed that the KF is the best methods among them. The filtering of the projections instead of the raw data improves the performance of filtering operations in both cases of the LMS and WE The CWWF works better than the conventional WF when it is applied to the projections as well. In conclusion, most of the linear filters show definitely better performance compared to EA. The KF effectively reduce the experimental time (to one-fourth of that required by EA). The projection method so called Subspace Method (SM) in the current study is a useful pre-filter to significantly reduce the noise on the raw data. The use of the SM is revealed in auditory EP estimation. The SM improves the performance of different algorithms.

Source

Proceedings of the 5Th International Symposium on Image and Signal Processing and Analysis

URI

https://hdl.handle.net/20.500.12712/20269

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.