Structural and aromatic aspects for tautomerism of (Z)-6-((4-bromophenylamino)methylene)-2,3-dihydroxycyclohexa-2,4-dienone
Abstract
The molecular and crystal structure of (Z)-6-((4-bromophenylamino)methylene)-2,3-dihydroxycyclohexa- 2,4-dienone were determined by single crystal X-ray diffraction and spectroscopic methods. Molecules of the compound can be regarded as a resonance hybrid of cis-keto tautomer and zwitterionic form. Pairs of molecules of the compound generate pseudocyclic centrosymmetric R-2(2)(10) supramolecular synthons with the aid of O-H center dot center dot center dot O type intermolecular H-bonds. Stacking of R-2(2)(10) synthons along b-axis is stabilized by pi center dot center dot center dot pi interactions. Changes in both covalent topology and molecular geometry of the compound accompanying proton transfer were monitored by a relaxed PES scan with respect to hydroxyl bond length used as redundant internal coordinate. Quantum chemical studies at 6-311 + G(d,p) level reveal that bond lengths which are indicative to tautomerization process cannot reach their expected values even if proton transfer occurs in gas phase and pseudo-aromatic chelate ring formation has primary effect on the stabilization of NH tautomer. Resonance-assisted intramolecular H-bond affects the electronic state of its neighboring aromatic fragments.