• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of Dimension Reduction in Mammograms Classification

Date

2013

Author

Oral, Canan
Sezgin, Hatice

Metadata

Show full item record

Abstract

Breast cancer is the most common type of cancer among women and causing deaths in women. In this paper, a CAD system is presented to investigate effects of dimension reduction for classifying mammograms. Proposed system consists of preprocessing, feature extraction, dimension reduction and classification steps. Multiscale top-hat transform is used to enhance mammograms and to remove noise. First order and second order textural features are extracted from enhanced mammograms. Principal component analysis (PCA) is used for dimension reduction. Two multilayer perceptron neural networks (MLP) are used to classify mammograms as normal or abnormal. All twenty features (without PCA) and selected seven features by PCA are applied each of two classifiers. First MLP classifier with all features achieved accuracy of 79,4%. Second MLP classifier with selected features by PCA achieved accuracy of 91,1%. PCA feature dimension reduction improved the classification performance, increasing accuracy value from 79,4% to 91,1%.

Source

2013 8Th International Conference on Electrical and Electronics Engineering (Eleco)

URI

https://hdl.handle.net/20.500.12712/16042

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.