• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Clostridium botulinum in honey: prevalence and antibiotic susceptibility of isolated strains

Date

2013

Author

Koluman, Ahmet
Golcu, Berfin Melikoglu
Derin, Okan
Ozkok, Sibel
Anniballi, Fabrizio

Metadata

Show full item record

Abstract

Clostridium botulinum and rare strains of C. butyricum and C. baratii produce an extremely potent toxin, the botulinum neurotoxin (BoNT). Infant botulism is significant for both its high mortality rates and for the sophisticated treatment that it requires. Isolation and identification of C. botulinum according to standards depend on mouse bioassays to determine toxin-producing ability of strains. Polymerase chain reaction (PCR) is used to detect the types of toxins expressed by bacteria. Since honey is an important source of infant botulism, we determined the types of toxins secreted by C. botulinum strains and their antibiotic resistance. In this study, the first step was conducted to determine the prevalence of C. botulinum in different honey types; as the second step, antibiotic susceptibility of the strains was determined; and, finally, PCR typing of toxin genes was done. Nineteen strains were isolated from 250 honey samples. All C. botulinum strains were evaluated for BoNT types using PCR. BoNT type A was observed in 12 of the 19 (63.15%) strains, type B was observed in 3 (15.78%) strains, type F was recorded in 2 (10.52%) strains, and 2 of the 19 (10.52%) strains showed no amplification. All strains represented a resistance to amoxicillin and trimethoprim sulfamethoxazole (100%), followed with sulfamethoxazole and ampicillin (94.73%). Resistance to nalidixic acid was seen in 84.21%. The results show that different types of honey are contaminated with C. botulinum and toxin types also show different distribution. Additionally, antibiotic resistance patterns of the strains showed different distributions, which indicates obligatory application of antibiotic resistance testing for prevention of secondary infections.

Source

Turkish Journal of Veterinary & Animal Sciences

Volume

37

Issue

6

URI

https://doi.org/10.3906/vet-1209-40
https://hdl.handle.net/20.500.12712/15574

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [4706]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.