• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance of single YSZ, Gd2Zr2O7 and double-layered YSZ/Gd2Zr2O7 thermal barrier coatings in isothermal oxidation test conditions

Date

2020

Author

Doleker, Kadir Mert
Karaoglanli, Abdullah Cahit
Ozgurluk, Yasin
Kobayashi, Akira

Metadata

Show full item record

Abstract

Oxidation is an inevitable failure mechanism under the operating temperature in gas turbines. To avoid negative effects of oxidation, ceramic-based materials having low thermal conductivity and high stability should be used to hot section components. In accordance with this purpose, thermal barrier coatings (TBCs) are used in order to increase the lifetime of gas turbine engine components that have not reached to desired levels yet. Yttria stabilized zirconia (YSZ) has been used as a conventional top coat material in TBCs. Increased the turbine inlet temperatures (TIT) promote to researchers to try higher stable material such as rare earth zirconates. In this study, CoNiCrAlY metallic powders were sprayed using a new emerging technique as called cold gas dynamic spray (CGDS) on Inconel 718 substrates. Single layer YSZ, Gd2Zr2O7 and double-layered YSZ/Gd2Zr2O7 were deposited by electron beam physical vapor deposition (EB-PVD) technique as top coat materials. In high temperature furnace, both TBC samples were isothermally oxidized at 1000 degrees C under different time periods. TBCs were examined as microstructural before and after oxidation tests. Thermally grown oxide (TGO) layer forming at the interface during oxidation were investigated and compared for each TBC systems. Oxidation and TGO growth behaviors were discussed.

Source

Vacuum

Volume

177

URI

https://doi.org/10.1016/j.vacuum.2020.109401
https://hdl.handle.net/20.500.12712/14

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.