• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations

Date

2017

Author

Pandit, Sapna
Jiwari, Ram
Bedi, Karan
Koksal, Mehmet Emir

Metadata

Show full item record

Abstract

Purpose - The purpose of this study is to develop an algorithm for approximate solutions of nonlinear hyperbolic partial differential equations. Design/methodology/approach - In this paper, an algorithm based on the Haar wavelets operational matrix for computational modelling of nonlinear hyperbolic type wave equations has been developed. These types of equations describe a variety of physical models in nonlinear optics, relativistic quantum mechanics, solitons and condensed matter physics, interaction of solitons in collision-less plasma and solid-state physics, etc. The algorithm reduces the equations into a system of algebraic equations and then the system is solved by the Gauss-elimination procedure. Some well-known hyperbolic-type wave problems are considered as numerical problems to check the accuracy and efficiency of the proposed algorithm. The numerical results are shown in figures and Linf, RMS and L2 error forms. Findings - The developed algorithm is used to find the computational modelling of nonlinear hyperbolictype wave equations. The algorithm is well suited for some well-known wave equations. Originality/value - This paper extends the idea of one dimensional Haar wavelets algorithms (Jiwari, 2015, 2012; Pandit et al., 2015; Kumar and Pandit, 2014, 2015) for two-dimensional hyperbolic problems and the idea of this algorithm is quite different from the idea for elliptic problems (Lepik, 2011; Shi et al., 2012). Second, the algorithm and error analysis are new for two-dimensional hyperbolic-type problems.

Source

Engineering Computations

Volume

34

Issue

8

URI

https://doi.org/10.1108/EC-10-2016-0364
https://hdl.handle.net/20.500.12712/12758

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.