• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of early events in barley (Hordeum vulgare L.) roots in response to Fusarium culmorum infection

Date

2017

Author

Tufan, Feyza
Ucarli, Cuneyt
Tunali, Berna
Gurel, Filiz

Metadata

Show full item record

Abstract

Fusarium culmorum is able to cause devastating crown rot disease, particularly in barley and wheat worldwide. The aim of this study was to investigate the early physiological and molecular changes in barley roots in response to F. culmorum infection. Therefore, we have infected 3-day old barley roots with a highly pathogenic F. culmorum isolate (F16). The root length and shoot length were significantly reduced at 7 days after infection in six widely cultivated Turkish barley cultivars. Based on the disease index values, MartA +/- (six-rowed) and Tokak 157/37 (two-rowed) were selected. Defense response was comparatively assessed with measures including H2O2 production and induction of stress-induced genes at six-time points after infection (0-96 h). Fungal infection did not affect the membrane integrity of root cells while osmolality decreased and H2O2 production increased. At the molecular level, antioxidant-related genes, HvCu/ZnSOD, HvGST6, HvAPX and HvBAS1 were constitutively and strongly expressed unlikely to HvCAT2 in which transcript accumulation was slightly detected upon infection. Differential expression of HvMT2, HvLOX1 and HvWRKY12 has been observed following the infection. Importantly, pathogenesis related (PR) genes HvPR1, HvPR3, HvPR4, HvPR5 and HvPR10 were induced at different time points of infection. The transcript accumulation of HvPR4 was the highest while HvPR10 expressed in minimal levels. Our results showed unexpected cellular responses such as disruption of osmotic adjustment in barley roots and the role of PR genes in initial response under F. culmorum attack.

Source

European Journal of Plant Pathology

Volume

148

Issue

2

URI

https://doi.org/10.1007/s10658-016-1087-3
https://hdl.handle.net/20.500.12712/12443

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.