• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol

Date

2018

Author

Comelekoglu, Ulku
Aktas, Savas
Demirbag, Burcu
Karagul, Meryem Ilkay
Yalin, Serap
Yildirim, Metin
Ozbay, Erkan
Article has an altmetric score of 2

See more details

Posted by 4 X users
20 readers on Mendeley

Metadata

Show full item record

Abstract

The nervous system is an important target of radiofrequency (RF) radiation exposure since it is the excitable component that is potentially able to interact with electromagnetic fields. The present study was designed to investigate the effects of 1,800 MHz RF radiation and the protective role of paricalcitol on the rat sciatic nerve. Rats were divided into four groups as control, paricalcitol, RF, and RF + paricalcitol. In RF groups, the rats were exposed to 1,800 MHz RF for 1 h per day for 4 weeks. Control and paricalcitol rats were kept under the same conditions without RF application. In paricalcitol groups, the rats were given 0.2 mu g/kg/day paricalcitol, three times per week for 4 weeks. Amplitude and latency of nerve compound action potentials, catalase activities, malondialdehyde (MDA) levels, and ultrastructural changes of sciatic nerve were evaluated. In the RF group, a significant reduction in amplitude, prolongation in latency, an increase in the MDA level, and an increase in catalase activity and degeneration in the myelinated nerve fibers were observed. The electrophysiological and histological findings were consistent with neuropathy, and the neuropathic changes were partially ameliorated with paricalcitol administration. Bioelectromagnetics. 39:631-643, 2018. (c) 2018 Wiley Periodicals, Inc.

Source

Bioelectromagnetics

Volume

39

Issue

8

URI

https://doi.org/10.1002/bem.22149
https://hdl.handle.net/20.500.12712/11284

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.