• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical investigation of thiol-ene click reactions: A DFT perspective

Date

2019

Author

Findik, Volkan
Degirmenci, Isa
Catak, Saron
Aviyente, Viktorya

Metadata

Show full item record

Abstract

In this study, a detailed quantum chemical investigation of the contribution of phenyl thiol derivatives in thiolene reaction mechanism has been carried out for the first time. DFT calculations have been used to investigate the role of substitution in thiol-ene reactions. It is well known that the reaction mechanism is strongly controlled by the k(P)/k(CT) ratio, where k(P) is the propagation rate constant of the thiyl radical's addition to the alkene and k(CT) is the rate constant of chain transfer to a thiol. The electrophilic nature of the phenylthio radicals and the singlet-triplet (S-T) gap of alkenes are mainly responsible for the variation of the activation barriers for the propagation reaction, this demonstrates the importance of the ene functionality on the propagation reaction. A correlation between the radical stabilization energy of the carbon centered radical intermediate and the chain transfer activation energy could not be established. The transition structures of the chain transfer reactions were shown to be stabilized by intramolecular interactions, which have lowered the activation barriers. In this study, we underlie the k(P/)k(CT) ratio which is highly dependent not only on the alkene functionality, but also on the thiol functionality. Tailor-made polymers can be obtained by altering the substituents or their positions, and the computational procedure described herein is expected to guide the synthesis.

Source

European Polymer Journal

Volume

110

URI

https://doi.org/10.1016/j.eurpolymj.2018.11.030
https://hdl.handle.net/20.500.12712/11199

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.