• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A New Modification of the Least Squares Method with Real Life Applications

Date

2019

Author

Khan, Zahid
Krebs, Katrina Lane
Ahmad, Sarfraz
Saghir, Aamir
Gumusteki, Serpil

Metadata

Show full item record

Abstract

A new regression M-estimator namely modified least squares (MLS) in the class of M-estimators is presented in this study. The proposed estimator overcomes the non-robustness property associated with traditional approach of the least square (LS) estimator. The effectiveness of the loss function used for proposed estimator has been compared with that of commonly implemented approach of the LS estimator. The influence and weight functions have been derived to analyze the robustness of the proposed estimator against the polluted measurements. Real data examples in statistical applications have been used to analyze the effectiveness of proposed estimator. The empirical results from real applications also confirm that MLS estimator substantially enhances the non-robustness property of the LS estimator.

Source

Punjab University Journal of Mathematics

Volume

51

Issue

10

URI

https://hdl.handle.net/20.500.12712/11085

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.