• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of artifacts generated by titanium, zirconium, CT, and CBCT images:A phantom study

Date

2019

Author

Kocasarac, Husniye Demirturk
Ustaoglu, Gulbahar
Bayrak, Seval
Katkar, Rujuta
Geha, Hassem
Deahl, S. Thomas, II
Noujeim, Marcel

Metadata

Show full item record

Abstract

Objective. The aim of this study was to assess artifacts generated by zirconium, titanium, and titanium-zirconium alloy implants on magnetic resonance imaging(MRI), computed tomography(CT), and cone beam computed tomography(CBCT) and to correlate the findings to the dose-area product and exposure factors on CT and CBCT. Study Design. Three phantoms were built by embedding zirconium, titanium, and titanium-zirconium implants in ultrasound gel. MRI, CT, and CBCT images were acquired by using multiple sequences and settings. For MRI, "artifact" was described as the length of signal void beyond the limits of the implant. For CT and CBCT, "artifact" was calculated by subtracting the gray level of the darkest pixel from the level of the lightest pixel. Results. On MRI, zirconium implants had minor distortion artifacts, whereas titanium and titanium-zirconium implants created extensive artifacts (P < .05). On CT and CBCT, artifacts were less prominent with titanium and titanium-zirconium implants compared with zirconium (P < .05). Titanium grade 5 implants with 0.3 and 0.4 mm(3) voxels produced the least severe artifacts. Conclusions. MRI images were less affected by artifacts from zirconium implants, whereas CT and CBCT images showed less severe artifacts from titanium and titanium-zirconium alloy implants. CT generated greater artifacts compared with CBCT. Larger CBCT voxel sizes reduced the dose-area product and the severity of artifacts.

Source

Oral Surgery Oral Medicine Oral Pathology Oral Radiology

Volume

127

Issue

6

URI

https://doi.org/10.1016/j.oooo.2019.01.074
https://hdl.handle.net/20.500.12712/10825

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.