• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pyrolysis and optimization of chicken manure wastes in fluidized bed reactor: CO2 capture in activated bio-chars

Date

2019

Author

Yildiz, Zeynep
Kaya, Nihan
Topcu, Yildiray
Uzun, Harun

Metadata

Show full item record

Abstract

In this study, the Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to determine the optimization of bio-char production from chicken manure wastes. The effects of temperature, heating rate and reaction time on pyrolysis of chicken manure waste were investigated in the fluidized bed reactor. Operation conditions were selected between the reaction temperatures was 200-500 degrees C, the heating rate was 5-20 degrees C/min and the reaction time was 30-120 min. The optimum condition was determined using the surface area results of the bio-chars. As a result of the optimization studies, it was determined that the temperature should be 400 degrees C, the heating rate should be 5 degrees C/min and the reaction time should be 110 min in order to obtain bio-char with highest surface area. Bio-char obtained in optimum condition in fluidized bed reactor was subjected to chemical activation with KOH and HCl, respectively. The CO2 adsorption capacity of raw and activated bio-char products was determined as 48.7, 76.8 and 85.7 mg/g at 25 degrees C using thermogravimetric analysis method, respectively. As a result, it has been found that the activated bio-chars are effective adsorbents for CO2 storage and it has been demonstrated that it is possible to evaluate chicken manure wastes for removing environmental pollutant in an economical way. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Source

Process Safety and Environmental Protection

Volume

130

URI

https://doi.org/10.1016/j.psep.2019.08.011
https://hdl.handle.net/20.500.12712/10573

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.