• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Analysis of MLR, ANN, and ANFIS Models for Prediction of Field Capacity and Permanent Wilting Point for Bafra Plain Soils

Date

2020

Author

Tasan, Sevda
Demir, Yusuf

Metadata

Show full item record

Abstract

Soil hydraulic parameters like moisture content at field capacity and permanent wilting point constitute significant input parameters of various biophysical models and agricultural practices (irrigation timing and amount of irrigation to be applied). In this study, the performance of three different methods (Multiple linear regression - MLR, Artificial Neural Network - ANN and Adaptive Neuro-Fuzzy Inference System - ANFIS) with different input parameters in prediction of field capacity and permanent wilting point from easily obtained soil characteristics were compared. Correlation analysis indicated that clay content, sand content, cation exchange capacity, CaCO3, and organic matter had significant correlations with FC and PWP (p < .01). Validation results revealed that the ANN model with the greatest R-2 and the lowest MAE and RMSE value exhibited better performance for prediction of FC and PWP than the MLR and ANFIS models. ANN model had R-2 = 0.83, MAE = 2.36% and RMSE = 3.30% for FC and R-2 = 0.81, MAE = 2.15%, RMSE = 2.89% for PWP in training dataset; R-2 = 0.80, MAE = 2.27%, RMSE = 3.12% for FC and R-2 = 0.83, MAE = 1.84%, RMSE = 2.40% for PWP in testing dataset. Also, Bayesian Regularization (BR) algorithm exhibited better performance for both FC and PWP than the other training algorithms.

Source

Communications in Soil Science and Plant Analysis

Volume

51

Issue

5

URI

https://doi.org/10.1080/00103624.2020.1729374
https://hdl.handle.net/20.500.12712/10198

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.