Distribution of eigenvalues for the discontinuous boundary-value problem with functional-manypoint conditions
Abstract
In this study, we investigate the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also a point of discontinuity, a finite number of internal points and abstract linear functionals. So our problem is not a pure boundary-value one. We single out a class of linear functionals and find simple algebraic conditions on the coefficients which guarantee the existence of an infinite number of eigenvalues. Also, the asymptotic formulas for the eigenvalues are found. The results obtained in this paper are new, even in the case of boundary conditions either without internal points or without linear functionals.